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Country and Capital Vectors Projected by PCA
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figure 2 from Mikolov et al. “Distributed Representations of
Words and Phrases and their Compositionality”, NIPS 2013
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example semantic network from Wikipedia:
https://en.wikipedia.org/wiki/Semantic_network



https://en.wikipedia.org/wiki/Semantic_network

combine structured and unstructured data
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intuition: closeness in the vector space encodes
semantic similarity, broadly interpreted

obtain different types of similarity when
considering different contexts
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intuition: closeness in the vector space encodes
semantic similarity, broadly interpreted

obtain different types of similarity when
considering different contexts
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relationships as transformations

For generality, we use affine transformations,

allowing for:
— rotations
— reflections
— shear

— squeeze

— translations ——
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enforcing similarity

Define an energy function

E(S.R,T)
t t 1
"source” entity “target” entity

relationship

Energy is low if 'S is related to T through R’ is true

/

note: R is often not symmetric, e.qg. ‘is a



enforcing similarity

Energy in terms of entity and relationship representations:
5(5, R, T‘@) — —VT - GRCS

... susceptible to maximising norms to minimise energy, so...

VT - GRCS

&5, R.TIO) = =1 TGres]




probabilistic model

Given energy, obtain probability distribution

c—E(S.R.T|©)

P(S.R.T|O) = 5., e €Grto)

< low energy triples have high probability

Also get conditional distributions, e.g.:

c—E(S.R.T|O)

Zs e—g(S,R,Tle)

P(S|R,T;©) =



training
Parameters learned using stochastic maximum likelihood

N
©* = argmax Z log P((S, R, T),|©)
n

Exact gradients are computationally intractable due to
partition function term, but reduce to expression of the form:

dlog P(D|©) _8E(S, R, T|©) _8E(S. R, T|©)
50; = Ep,(s.rRT) 50, —Ep,(s.RT) 50,

t t

data distribution model distribution



persistent contrastive divergence

dlog P(D|©) _BE(S, R, T|O) _BE(S, R, T|O)
50; =Ep,(s.R.T) 50; —Ep,,(s.R.T) 50,
data distribution model distribution

Obtain samples from model distribution with Gibbs
sampling on conditional distributions

P(SIR, T;©) P(RI|S, T;©) P(T|S, R; ©)

Run independent Markov chains, retain between batches

Tijmen Tieleman, “Training Restricted Boltzmann Machines
using Approximations to the Likelihood Gradient”, ICML 2008



experiments

ROC curve for predicting true triples

1.00 =

WordNet task: predict
whether a triple (S, R, T)
is ‘true’ by looking at
P(RIS, T)

example:
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Socher et al., “Reasoning with Neural Tensor Networks
for Knowledge Base Completion”, NIPS 2013



experiments - semi-supervised

Since we have a joint model, we can integrate over
unseen labels

P(S,T) = ZPSrT)

We can do semi-supervised training, forming gradient
updates as weighted averages of the unseen label

Given a fixed amount of labelled data, we see it adding
unlabelled data helps the prediction task



experiments - semi-supervised
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experiments

We can also add unstructured
training examples (here from
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experiments

We can ask the model to find relationships in free data by
giving it ‘unlabelled” examples from Wikipedia and telling it
how many relationships we think there are

Then evaluate the raw word embeddings to see if the
presence of latent relationships allows them to capture more
semantic information

...we do this by using them as inputs to multi-class classitier
(random forest) predicting the WordNet relationships



experiments

Reporting F1 score for varying number of latent relationship...

This is preliminary, but more latent relationships possibly help!

Relationship to predict (1-9)
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future work

* Analysis of learned latent relationships

* Relationship representation: are affine
transformations enough?

e Energy function: cosine distance is not sensitive
to small deviations between vectors

* GPU implementation using Theano



summary

| have presented a
probabilistic P(S,R, T|©) =
generative model

—&(s,r,t|©
Es,r,te (s.r,t|©)

for combining structured and unstructured data,
potentially only partially labelled
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code and data here:

https://github.com/corcra/bf2
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