Generating (Medical) Time Series with GANs

Stephanie Hyland CLS Retreat, Stoos (CH) 4th October 2017

This work was done with Cristóbal Esteban and Gunnar Rätsch

ETH zürich

one-slide talk summary

- Use generative adversarial networks with recurrent neural networks to generate time-series data
 - Look at synthetic data, MNIST, ICU time series
- Evaluate generated data:
 - To show it's **realistic**: with maximum mean discrepancy
 - To show it's useful: with (seemingly) novel transferlearning approach
 - To show it's **not** the training data: multiple methods

why generate data? (our motivation)

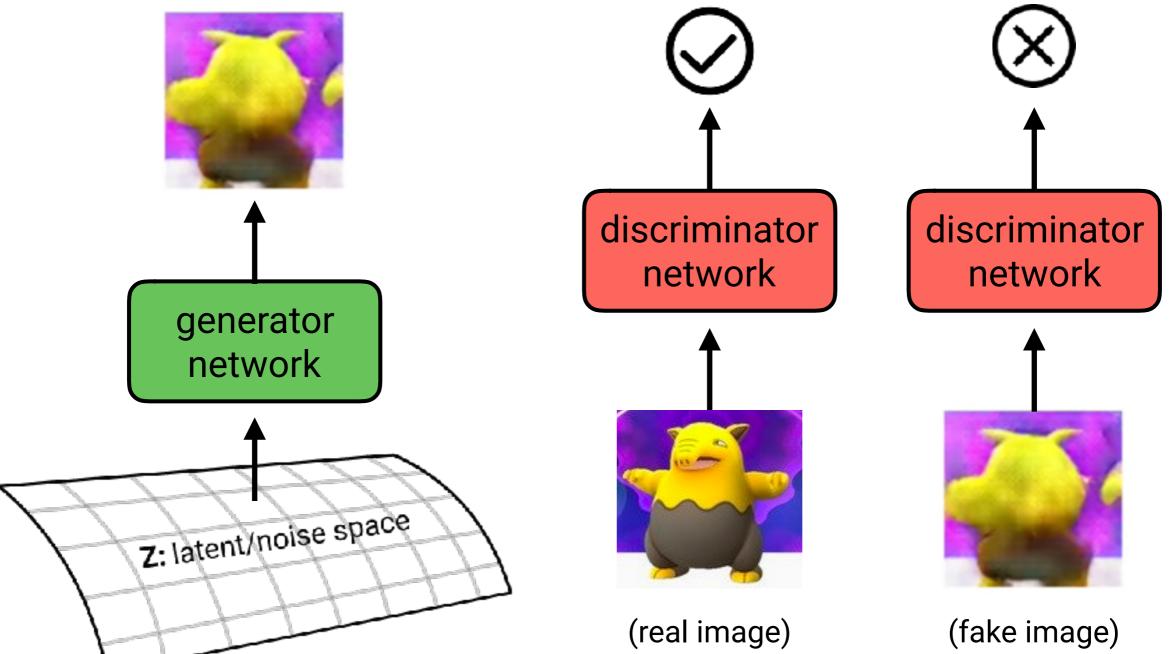
- **1. Data sharing** medical data requires protection, but this holds back machine learning research due to:
 - a. Lack of reproducibility
 - b. Lack of shared tasks on datasets
- **2. Data augmentation** difficulty of inter-hospital sharing means medical datasets can be small/limited
- **3. Simulation** generating realistic data from specific types of patients enables training/education of medical professionals

what is a GAN? (generative adversarial network)

objective: discriminate if a sample is **real** or **fake** *(binary classification)*

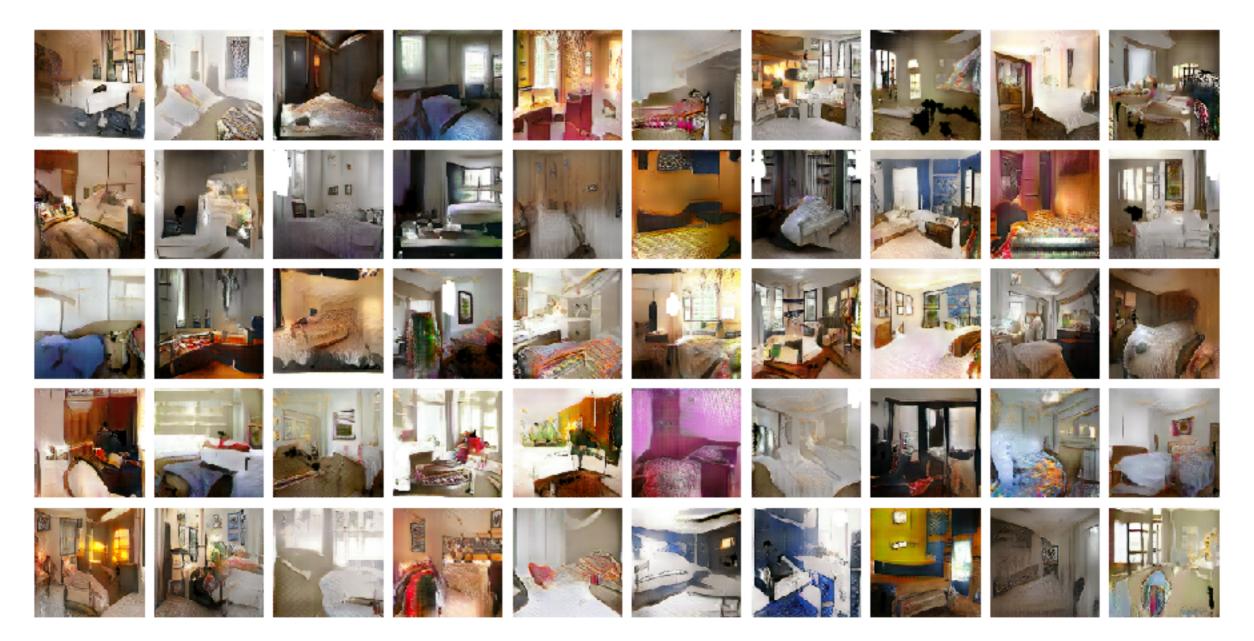
generator network objective: generate fake samples to **trick** discriminator (maximise probability of discriminator outputting positive label on fake samples)

what is a GAN? (generative adversarial network)



https://www.youtube.com/watch?v=rs3al7bACGc DCGAN with Pokemon Go - Yota Ishida

example synthetic images trained on bedrooms



https://github.com/cameronfabbri/LSGANs-Tensorflow https://github.com/martinarjovsky/WassersteinGAN

GANs for sequences

- Most GAN work is on *images*, where generator and discriminator are convolutional neural networks
- What about generating sequences?
- People have tried it for text (fixed-length "sentence"):

Marks live up in the club comes the handed up moved to a brief d

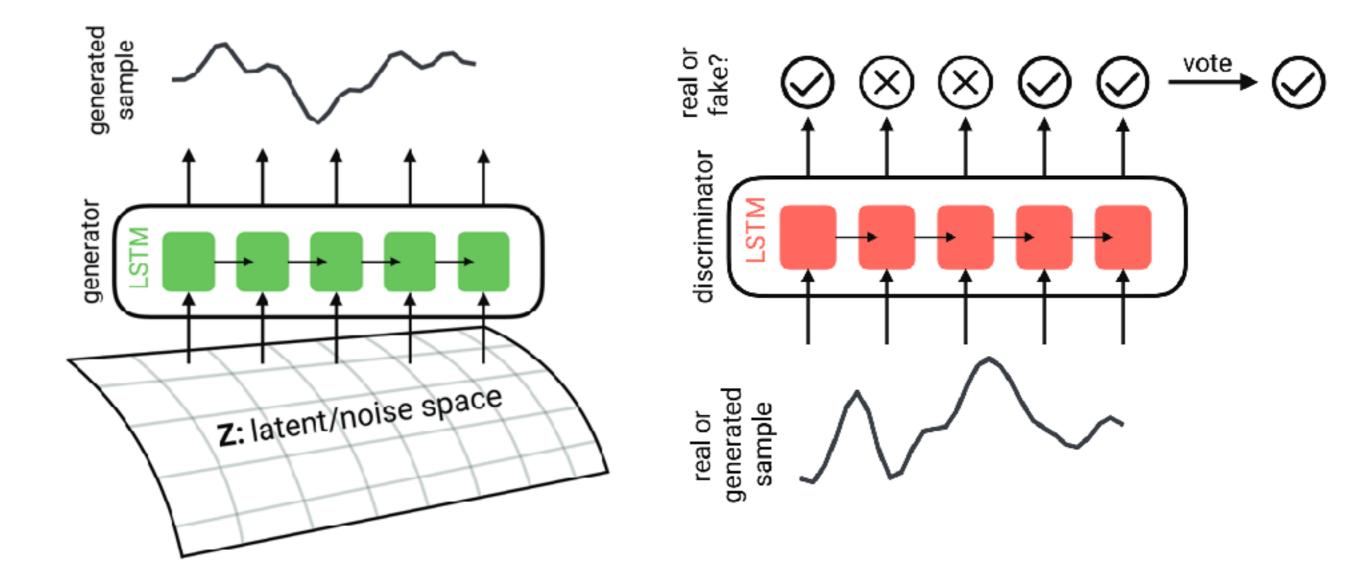
Language Generation with Recurrent Generative Adversarial Networks without Pre-training, Ofir Press, Amir Bar, Ben Bogin, Jonathan Berant, Lior Wolf, arXiv 17

Busino game camperate spent odea

Improved Training of Wasserstein GANs, Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, Aaron Courville, arXiv 17

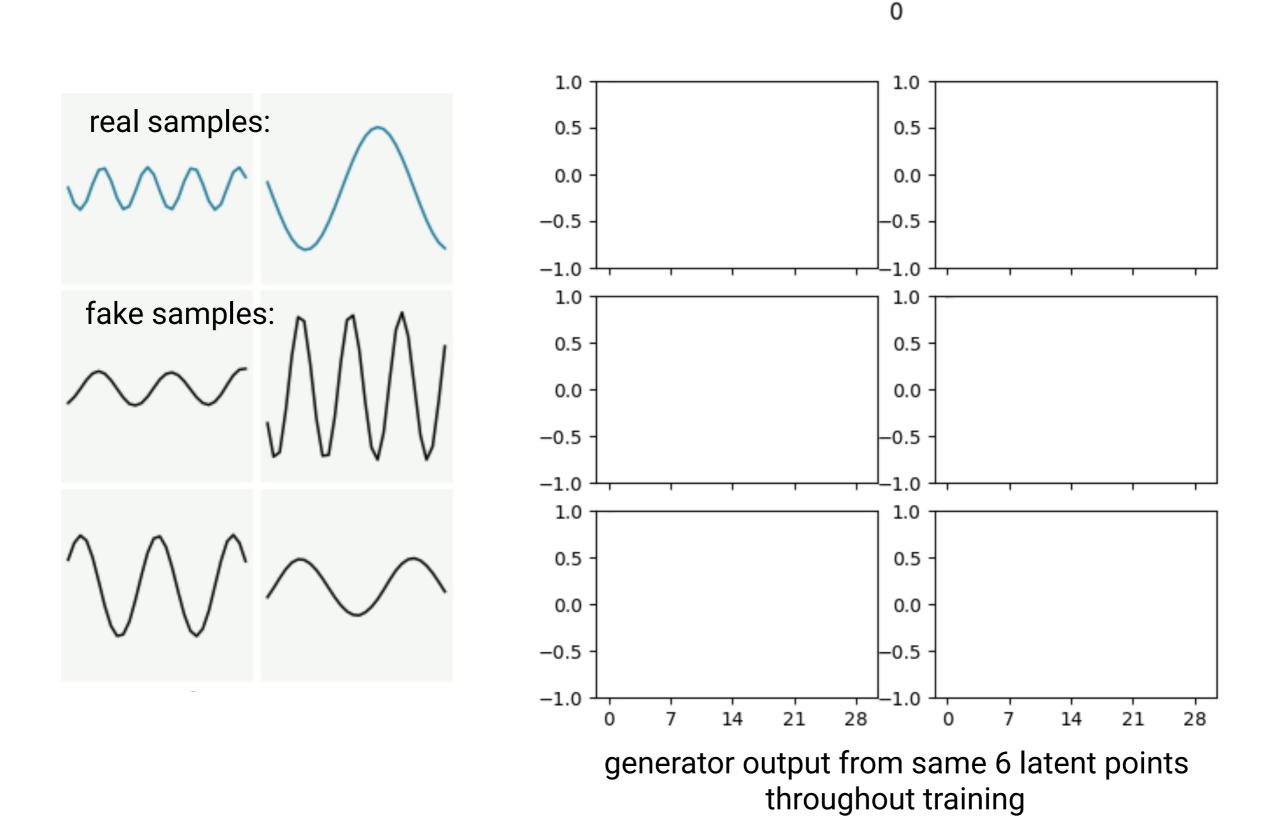
Recurrent GAN (RGAN)

 Idea: use recurrent neural networks (e.g. LSTM) in both discriminator and generator:



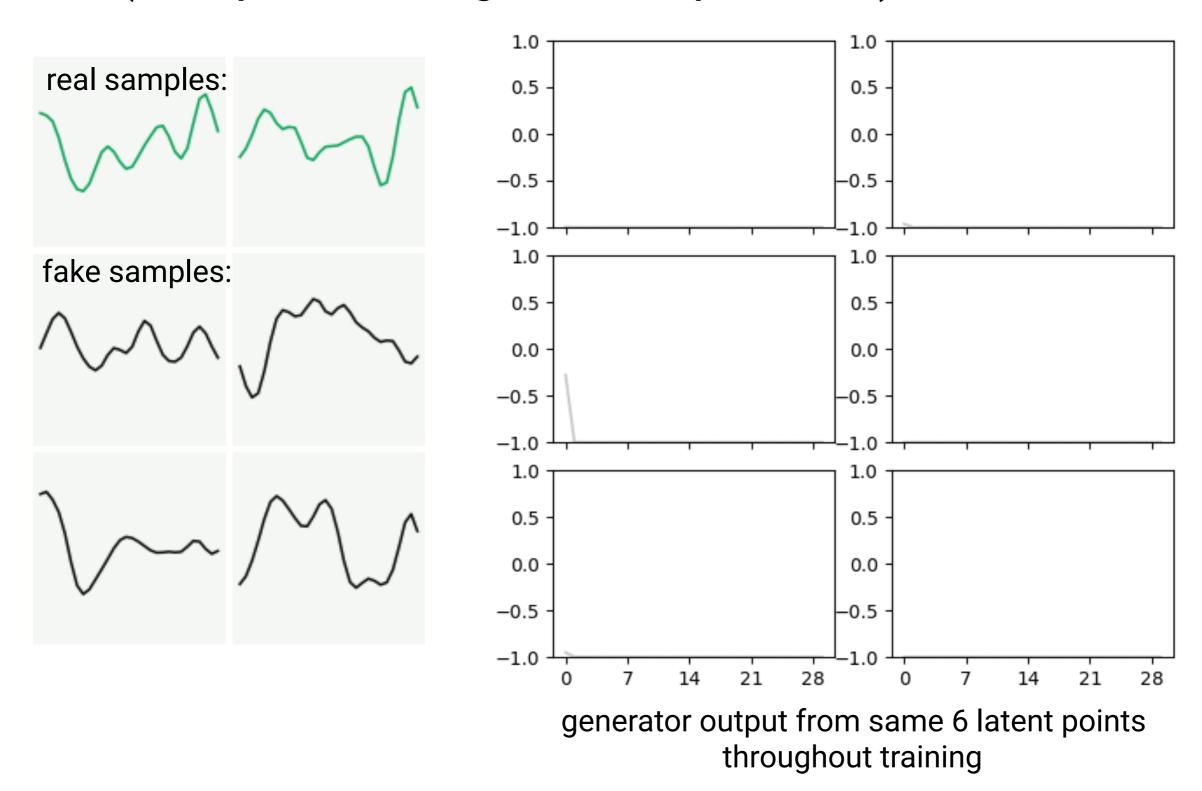
https://github.com/ratschlab/RGAN/blob/master/figures/sine_animation.gif

RGAN - sine waves



https://github.com/ratschlab/RGAN/blob/master/figures/rbf_animation.gif

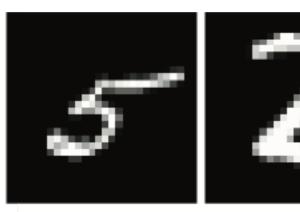
RGAN - smooth functions (samples from gaussian process)



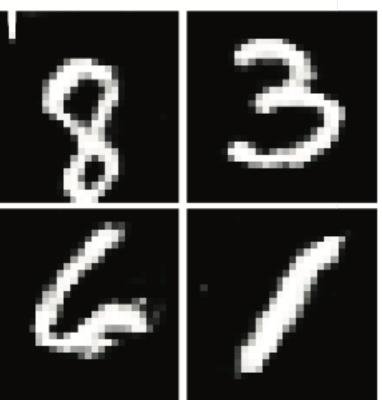
https://github.com/ratschlab/RGAN/blob/master/figures/mnistfull_a_animation.gif

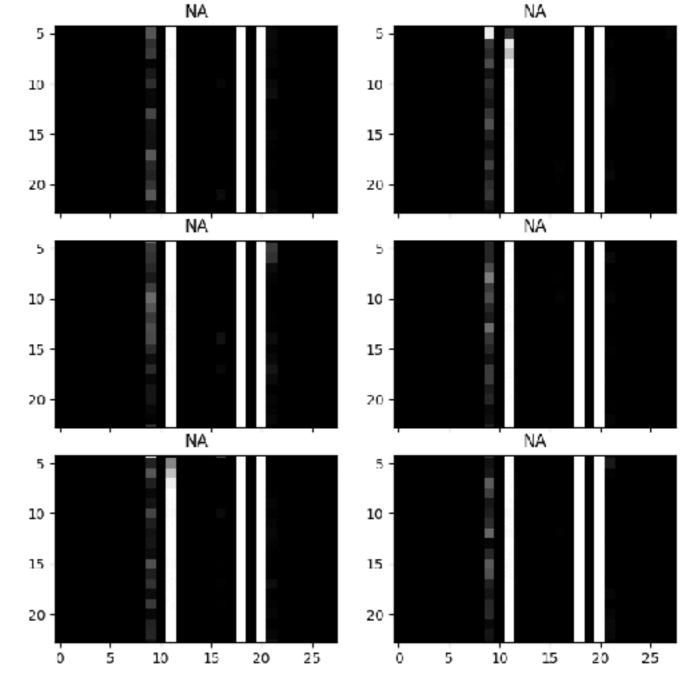
RGAN - MNIST as 14x14 sequence

real samples:



fake samples:





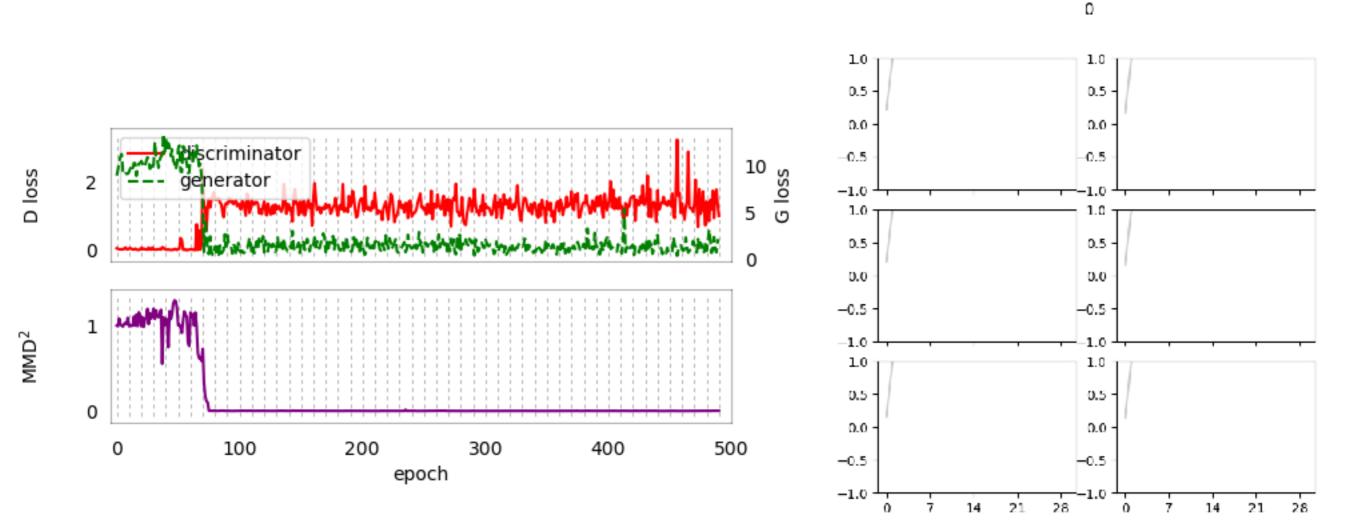
generator output from same 6 latent points throughout training

evaluating GAN samples (beyond visual inspection...)

- Visual inspection as evaluation: (used in many papers)
 S Doesn't scale
 - ⊗ Uses viewer's 'internal discriminator' (subjective)
- Improvement: use maximum mean discrepancy ask if two sets of samples came from the same distribution
 - \otimes Requires an appropriate kernel (K) on sample space

$$\widehat{\text{MMD}}_u^2 = \frac{1}{n(n-1)} \sum_{i=1}^n \sum_{j \neq i}^n K(x_i, x_j) - \frac{2}{mn} \sum_{i=1}^n \sum_{j=1}^m K(x_i, y_j) + \frac{1}{m(m-1)} \sum_{i=1}^m \sum_{j \neq i}^m K(y_i, y_j)$$

evaluating GAN samples (with maximum mean discrepancy...)



(this example looks worse than normal because it was trained using differentially private stochastic gradient descent)

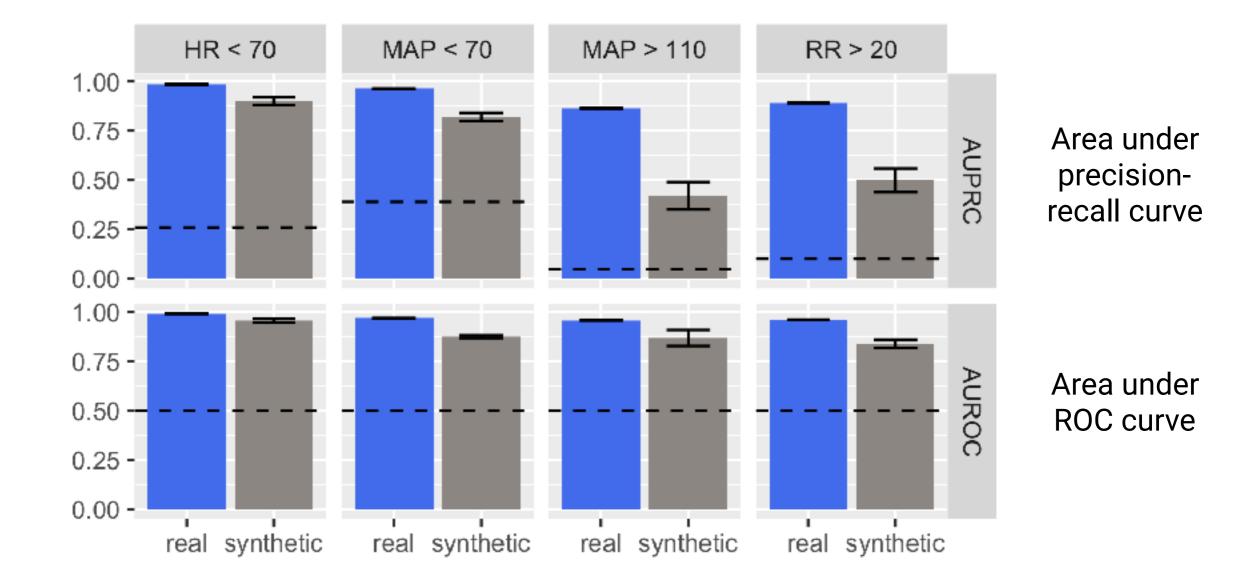
evaluating GAN samples (with a task)

- Idea: (TSTR)
 - a. train model with synthetic data
 - b. test that model on real data
- Captures the utility of the synthetic data for its intended purpose - training models that can generalise
- Requires **labelled** synthetic dataset:
 - Extend RGAN to be conditional (RCGAN)
 - Takes latent point and label to generate sample

a medically relevant task

- Data: "eICU collaborative research database", from Phillips eICU program (open access)
 - ~140,000 patients from 459 critical care units across the USA (between 2014-2015)
 - Measurements every 5 minutes of various vital signs
- Task:
 - Predict if values will become 'extreme' (high/low)
 - Focus on first 4 hours of patient's stay
 - variables: heart rate, respiratory rate, mean arterial pressure, oxygen saturation

TSTR results for eICU task

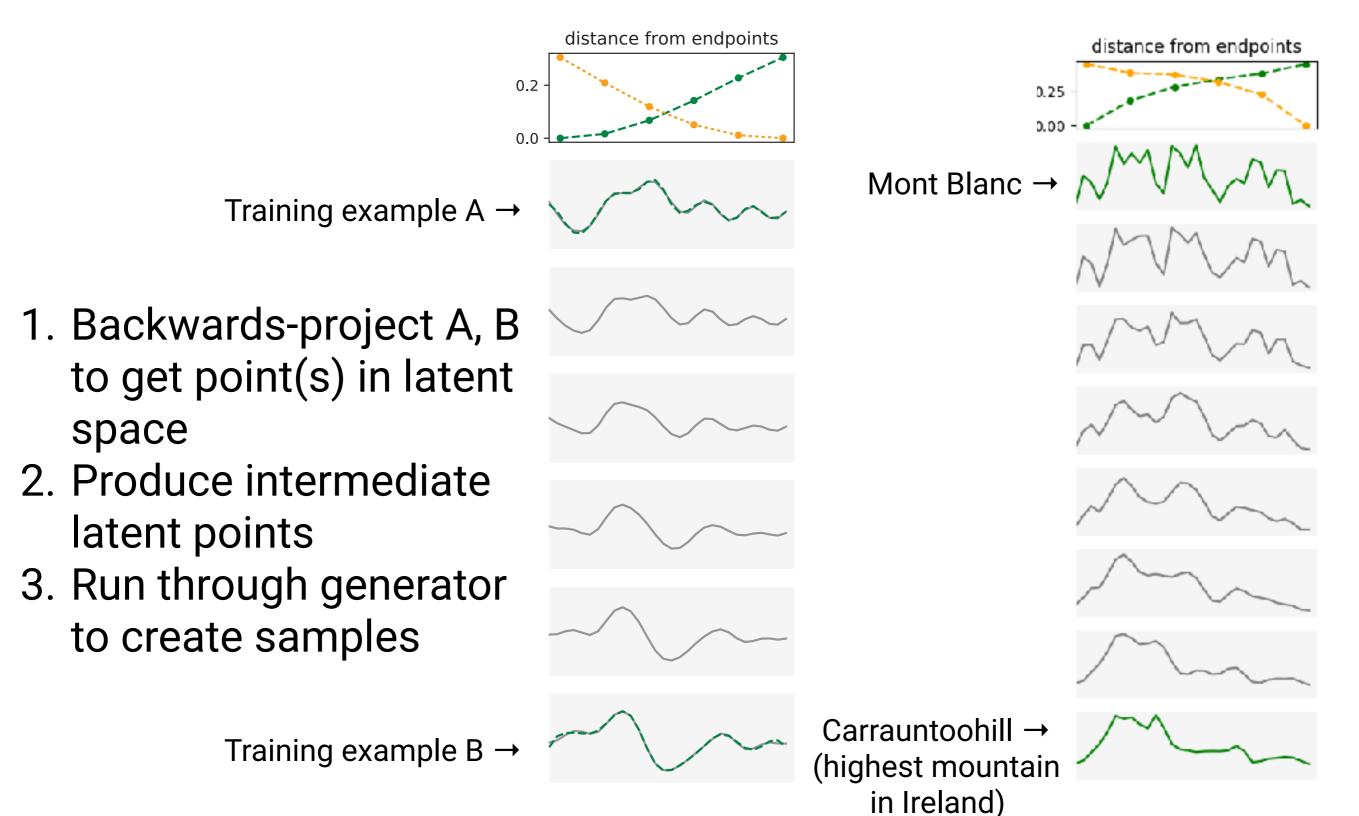


Conclusion: model trained on synthetic data can still generalise well to real test set

is it memorising the data?

- Trivially successful generator would simply output training examples
 - Known problem for GANs 'mode collapse'
 - Constitutes privacy breach of original training data
- Tested to see if model is memorising:
 - 1. Do reconstruction errors differ between train and test?
 - 2. **Maximum mean discrepancy:** is MMD(synth, train) < MMD(synth, test)?
 - 3. **Interpolation**: smoothly vary between latent points corresponding to training examples, look at output

interpolation examples



in conclusion

- Recurrent generative adversarial network to generate synthetic, real-valued time-series data (e.g. ICU data)
- (Seemingly) novel evaluation via **TSTR method**
- Analysed synthetic data for evidence of memorisation (found none)
- Future work:
 - Include stronger privacy guarantees (e.g. differential privacy)
 - Comparisons with other methods (e.g. variational recurrent auto-encoders)

Thank you!

With thanks to: Cristóbal Esteban Gunnar Rätsch Francesco Locatello Xinrui Lyu The rest of the BMI group

Real-valued (Medical) Time Series Generation with Recurrent Conditional GANs

Stephanie L. Hyland*1, 2, Cristóbal Esteban*1, Gunnar Rätsch1 ¹Department of Computer Science, ETH Zurich, Switzerland ²Tri-Institutional Training Program in Computational Biology and Medicine, Weill Cornell Medical {stephanie.hyland, cristobal.esteban, raetsch}@inf.ethz.ch

*Authors contributed equally.

https://github.com/ratschlab/RGAN

hyland@inf.ethz.ch

