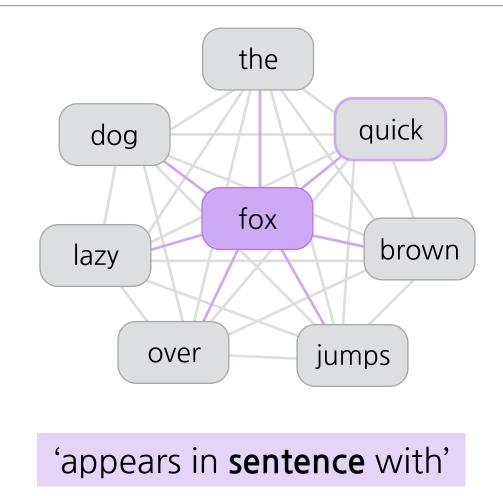
A Generative Model of Words and Relationships from Multiple Sources

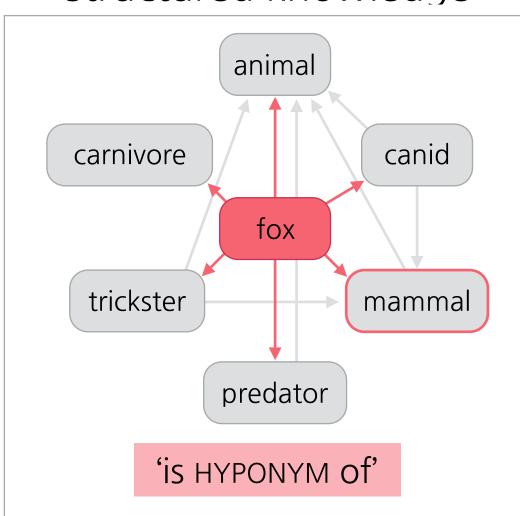
Introduction

- Word embeddings: useful semantic representations for downstream natural language processing tasks:
 - · distance in embedding space ~ semantic distance
 - · learn using co-occurrence statistics
- Technical domains (such as **medicine**) may have:
 - x corpora of limited size and expressivity
 - ✓ prior knowledge encoded in knowledge graphs

unstructured text



structured knowledge

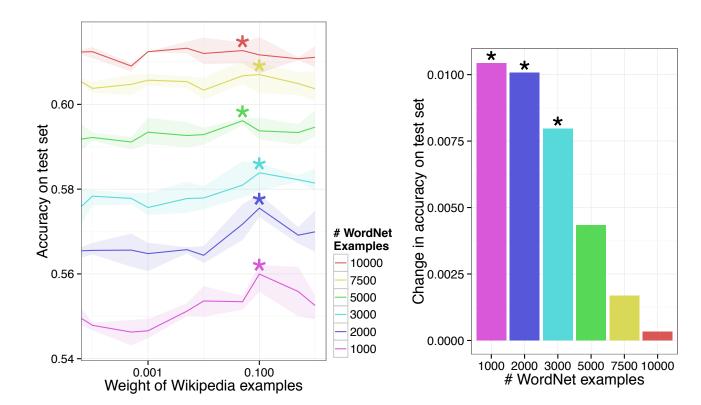


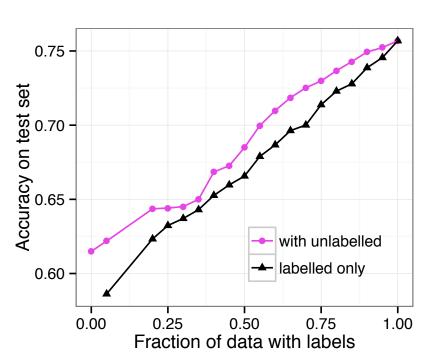
Experiments

Triplet classification: predict if (S, R, T) is true/false:

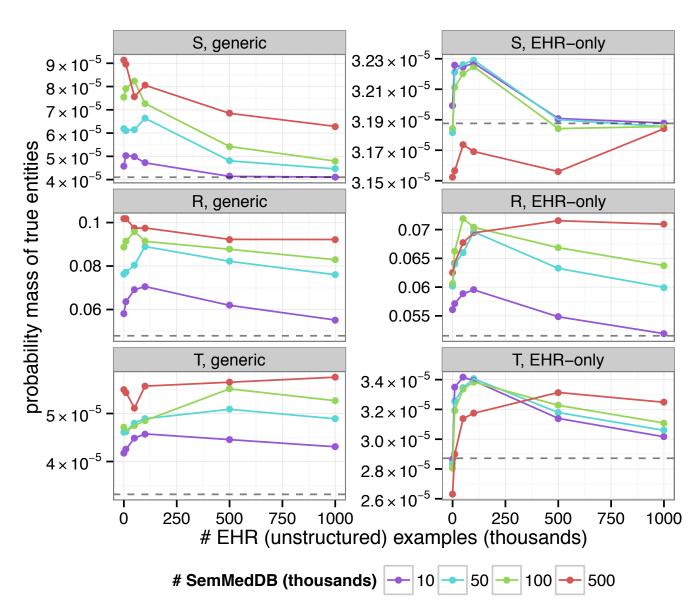
A. unstructured data helps when structured data is scarce

B. unlabelled structured data also helps





Edge prediction: predict R given S and T, etc.: report total probability of all correct responses



Knowledge transfer:

we can predict relationships between entities appearing only in the unstructured (EHR) data

Stephanie L. Hyland^{1,2}, Theofanis Karaletsos¹, Gunnar Rätsch¹ Computational Biology, Memorial Sloan Kettering Cancer Centre, New York

²Weill Cornell Graduate School of Medical Sciences, New York

Model

- · Approach:
 - l.combine **structured** (knowledge graph) and **unstructured** (freetext) data
 - 2.generalise co-occurrence to include **relationships** defined by **edges** in graph: represent as **affine transformations**
- · Joint generative model of relationships and entity pairs
- · Boltzmann distribution:

tamoxifen CAN_TREAT breast_cancer
dog APPEARS_IN_SENTENCE_WITH fox
brain IS_LOCATION_OF glioma
fox IS_HYPONYM_OF carnivore

 $P(S, R, T | \Theta) = \frac{1}{Z(\Theta)} e^{-\frac{\mathcal{E}(S, R, T | \Theta)}{Z(\Theta)}}$ $\mathcal{E}(S, R, T | \Theta) = -\frac{\mathbf{v}_T \cdot G_R \mathbf{c}_S}{\|\mathbf{v}_T\| \|G_R \mathbf{c}_S\|}$ (cosine similarity)

"S is related to \boldsymbol{T} through \boldsymbol{R} "

- · Latent relationships from unlabelled examples
- · Inference: stochastic maximum likelihood (PCD)

Data

- · Generic English: Wikipedia (unstructured), WordNet (structured)
 - 12 relationships (including APPEARS_IN_SENTENCE)
 - · 112,581 WordNet training examples
- Medical English: electronic health records (EHR) from MSKCC (unstructured), SEMMEDDB (structured)
 - took top 20 relationships from SEMMEDDB
 - identified UMLS concepts in EHR

Conclusion

- · Our model learns embeddings using both **distributional statistics** and structured **knowledge graphs**
- · Relationships between words are affine transformations of the space
- · Combining data sources can improve the quality of embeddings
- · We can predict relationships for entities not appearing in the graph

Kilicoglu *et al.* 2012. SemMedDB: a PubMed-scale repository of biomedical semantic predications. (*Bioinformatics*) Mikolov *et al.* 2013. Distributed representations of words and phrases and their compositionality. (*NIPS*) Tieleman, T. 2008. Training restricted Boltzmann machines using approximations to the likelihood gradient. (*ICML*). Socher *et al.* 2013. Reasoning with neural tensor networks for knowledge base completion. (*NIPS*)

